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Abstract 

The Value Stream Mapping method provides a comprehensive overview of a process, pinpoints inefficiencies, and thereby offers a roadmap for 

eliminating waste and enhancing added value. Simplifications are often made enabling manual evaluations but at the same time sacrificing 

valuable information about dynamic process behavior. Simulation software enables the aspect of dynamics to be considered. This software 

requires a digital representation of the value stream map created during Value Stream Mapping, which is typically created in non-digital formats 

unusable in software. This paper presents an approach that enables the automated digitization of such non-digital value stream maps. 
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1. Introduction 

Value Stream Mapping is recognized as an effective lean 

tool for visualizing, analyzing, and improving production 

processes by identifying and eliminating waste, thus creating 

added value. Originating from the Toyota Production System 

[1], Value Stream Mapping has been widely adopted across 

various industries to optimize production and service 

operations. The method involves mapping out all activities 

required to bring a product or service from conception to 

delivery to the customer, categorizing these activities into 

value-adding and non-value-adding, and then strategizing on 

eliminating the latter. [2] 

The usage of simulation software for value streams brings 

the potential of analyzing their dynamic behavior compared to 

traditional non-simulation-aided analysis in which 

simplifications have to be assumed that do not allow for 

dynamic behavior analysis [3]. Such software needs a digital 

representation of the value stream map (VSM) that defines a 

value stream's properties by illustrating and parameterizing the 

underlying logic of process execution [4]. 

VSMs are traditionally created using a pen-and-paper 

approach [5], which typically involves whiteboards or large 

sheets of paper. Manual digitization of these VSMs is time-

consuming and creates the feeling of having to do the same 

work twice. This may already lead to an inhibition threshold 

that results in a rejection of the use of simulation software 

which reflects the necessity of developing a functionality for 

improved workflow in this regard.  

In this paper, a novel approach for the automated 

digitization of analog VSMs is proposed. This study focuses on 

two things. First, the overall methodology in the form of a 

computation pipeline beginning from the photo of a VSM to a 

fully digital representation is introduced. This pipeline includes 

machine learning (ML) models used for image interpretation. 

Secondly, an approach for dataset enrichment is proposed. This 

approach aims to solve the problem of data scarcity hampering 

the development of performant ML models for this use case. 
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2. Background 

Despite the considerable age of the Value Stream Mapping, 

it is still the subject of current research. This method is being 

expanded to include aspects such as sustainability [6], worker 

ergonomics and health [7], complex information flows 

regarding Industry 4.0 [8], and dynamic process behavior [9]. 

These developments show that there is still great potential for 

expansion in the Value Stream Mapping method.  

The VSM is a schematic visually depicting process entities, 

material flows, and information exchange within the value 

stream. Either ready-made templates in the form of magnetic 

cards, sticky notes, or pure hand drawings can be used when 

creating the VSM. Figure 1 depicts a template-based and a 

hand-drawn example of a VSM. 

 

 

Fig. 1: Hand-drawn and template-based VSM. 

Traditional Value Stream Mapping using a manual pen-and-

paper approach is typically based on a lot of simplifying 

assumptions. For process times, replenishment times, 

throughput times, stock levels, etc., average values are applied. 

However, it is often desirable to understand how backlogs in 

buffers are building up, why processes are over- or under-

utilized, and how shared resources may be operated best. The 

main motivation for simulating value streams is to overcome 

the use of simplified averages, thus enabling dynamic 

evaluations of e.g., utilization of processes, product stocks, etc. 

The vast amount of work on the combination of simulation and 

lean approaches presented e.g., in the comprehensive literature 

review by [10], demonstrates how beneficial this connection is.  

VSMs embed semantic details through the specific symbols 

and arrows utilized, alongside parametric details via 

handwritten notes on these symbols, including any data boxes 

[11]. Both, the written and the information corresponding to the 

symbols present, are of interest for VSM digitization. While 

Toyota played a significant role in popularizing Value Stream 

Mapping, it is important to note that the specific symbols used 

may have been refined and adapted by various Lean 

practitioners over the years [12]. As a result, there is not a 

single, universally standardized set of symbols, and variations 

may exist based on specific industry practices or individual 

preferences. These high possible variances make manual 

feature definition practically impossible which predestines this 

task for being solved using ML [13]. Publicly available 

implementations of architectures such as Rotated RetinaNet 

[14] or YoloV5 OBB [15] enable the rotation sensitive 

detection of objects (ROSD) in images as well as an estimation 

of their corresponding rotations with a high quality and 

acceptable latencies. Further, foundation ML models, 

especially Google's Cloud Vision API [16], have recently 

shown superior performance in optical character recognition 

(OCR) and offer easy-to-implement API access [17].  

Value Stream Mapping can be regarded as a niche problem 

with a very limited database for ML model training. Recent 

research has shown the potential of video games and simulation 

software as well as generative artificial intelligence in the 

creation of synthetic training data [18–20]. Synthetic data is 

often seen as an inferior substitute for real-world data. 

However, this view ignores the true potential of synthetic data. 

A study by Gartner predicts that synthetic data will overshadow 

real-world data by 2030 [21]. Synthetic data is generated 

artificially which distinguishes it from real-world data that 

originates from observations or measurements in the real world. 

Although real-world data, when available, is still the best way 

to represent information that is indicative of the underlying 

problem, synthetic data can address typical problems inherent 

in real-world data. The following are of particular interest for 

the underlying use case: 

• Data privacy and sensitivity: Real-world datasets often 

contain sensitive or personally identifiable information, 

raising privacy concerns and legal issues e.g., VSMs contain 

sensitive information that is of interest to competitors [22]. 

• Annotation costs and accuracy: Annotating data can be 

severely time-consuming and costly. Furthermore, manual 

annotations are prone to errors. Synthetic data can be 

annotated automatically with perfect accuracy. [18, 19]  

• Model robustness, generalization, and edge cases: Synthetic 

data can be generated on a large scale, and, depending on 

the quality, large variances can be induced that cover a wide 

range of edge cases that are rarely, if ever, present in the 

limited real-world data available. [23] 

3. Methodology 

In this section, the underlying processing pipeline for 

automatized VSM digitization is introduced. Further, a simple 

generator for synthetic hand drawing data generation to 

overcome the problem of data scarcity present in this use case 

is presented. 
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3.1. VSM digitization. 

Figure 2 depicts the overall methodology for VSM 

digitization. RSOD is used to identify and infer the position and 

orientation of symbols, enabling the reconstruction of their 

overall arrangement. For the reasons described in Chapter 2, an 

ML model is used in this context. After that, an OCR model is 

used to extract the parametric information associated with each 

symbol respectively.  

A heuristic can be used to reconstruct the holistic VSM. The 

semantics of the VSM can be inferred using neighborhood 

information of the symbols as well as connections via arrows 

and by considering a predefined set of fundamentally possible 

connections. Process parameters are labeled in VSMs using 

keywords and abbreviations. These can be used to assign 

corresponding values to the parameters considered in the 

digitized VSM representation. This avoids the need for training 

data to tune an ML model for solving this task and represents 

an explainable approach.  

3.2. Addressing data scarcity for hand drawing recognition. 

As described in Chapter 2, VSMs can be created using 

premade templates or they can be drawn entirely by hand. Both, 

template-based and purely hand-drawn VSMs, show hand-

drawn arrows carrying important information about a VSM’s 
schematics. Consequently, the recognition of hand drawings is 

key for VSM digitization. The experiments described in 

Chapter 4 conclude that there is a need for more quality training 

data of hand-drawn arrows to enable the recognition of VSMs. 

A targeted creation and annotation of sample data is time-

consuming and would also only produce data that shows a low 

degree of variance. The low variance is to be expected because 

only a manageable number of creators would be available for 

data generation, and these can only deviate to a limited extent 

from their characteristic drawing style. This also reflects in the 

fact that every person has a very characteristic handwriting 

from which it is difficult to deviate.  

To address this problem of data scarcity, a novel approach 

for the generation of hand drawing data for ML model training 

is presented. The approach is based on the idea of creating data 

synthetically instead of conducting manual creation. Figure 3 

shows the logical sequence of the processing steps the 

generator uses to create a simple arrow in a hand-drawn style. 

 

 

Fig. 3: Arrow generator processing pipeline. 

The drawings used in VSMs are function-oriented and are 

not embellished with complex textures, shading, or non-

purposeful components. All types of value stream symbols can 

Fig. 2: VSM digitization processing pipeline. 
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be composed of simple geometric shapes such as straight lines, 

circles, or arcs. This means that it is possible to simply 

assemble symbols from basic geometric objects that can be 

defined in the form of code.  

Firstly, a general definition of the arrow is made, with a 

minimum and a maximum for the arrow length, head angle, 

head width, and curvature of the lines that make up the arrow. 

Now a first completely straight arrow is created, whose length, 

head angle, and head width correspond to random values in the 

predefined minimum and maximum range. Points are randomly 
selected on the lines that make up the arrow and are moved 

orthogonally to the respective line within a random predefined 

range. The number of points selected, and the minimum and 

maximum shift range determine how and to what extent an 

arrow is curved. The curvature is achieved by drawing Bézier 

curves through the shifted points [24]. The generator can 

produce and annotate vast amounts of arrows in a short time. 

As their appearance is based on random components, a large 

spectrum of variations is covered. After completing the 

generation pipeline, each arrow's line thickness is determined 

randomly, the arrow is rotated, and placed on a canvas 

mimicking brown moderation paper or white boards located in 

a room with dynamic shadow throw present. Figure 4 depicts a 

selection of arrows created by the current generator 

implementation which are ready to be added to a dataset for 

hand drawing recognition.  

 

 

Fig. 4: Arrows created by generator. 

4. Experiments 

In this chapter, two things are pointed out. Firstly, the 

performance of an RSOD model trained on real-world data of 

template-based VSMs will be demonstrated. Secondly, it is 

shown that it is fundamentally possible to have an RSOD model 

learn key characteristics of hand drawings using synthetically 

generated data. The aim is to pave the way towards an RSOD 

model for completely hand-drawn VSM recognition. 

4.1. Model training for template-based VSM recognition. 

To evaluate the potential of RSOD in the context of 

template-based VSM recognition, a model is trained on a real-

world dataset of 229 photos of VSMs in which each VSM can 

be present up to 5 times photographed under different 

environmental conditions. The dataset shows annotated 

examples of 1299 arrows as well as 7217 template-based value 

stream symbols. During training, the standard augmentations 

scaling, rotating, shearing, blurring, adding of noise, 

translating, perspective distortion, and varying hue, saturation, 

and color value are used [25]. The framework used for training 

the RSOD model is based on a YoloV5 architecture and allows 

the use of rotated bounding boxes [15].  

The model performance is evaluated using the Mean 

Average Precision metric (mAP) for object detection [26]. The 

metric values are calculated for an Intersection over Union 

(IoU) threshold of 0.5 and as an average of results yielded for 

an IoU threshold range from 0.5 to 0.95 following the 

benchmarking principles introduced with large-scale object 

detection benchmark dataset COCO, which are standard in the 

field of object detection [26]. The IoU threshold is a criterion 

used to determine whether a predicted bounding box in object 

detection accurately matches a ground truth box [27]. 

The dataset is split into 183 samples for training, 23 for 

validation, and 23 for testing. It is ensured that no VSM is 

present in multiple subsets. Table 1 shows the yielded mAP 

values for symbols and arrows on the unseen test subset.  

Table 1: Yielded mAPs for arrows and symbols. 

Test dataset performance mAP 0.5 mAP 0.5-

0.95 

Arrows and Symbols 0.82 0.63 

Symbols 0.84 0.65 

Arrows 0.54 0.30 

 

The performance when recognizing arrows is, as expected, 

significantly lower than when recognizing template-based 

symbols. Figure 5 depicts the results of an inference run for a 

commonly used IoU threshold of 0.5 [28]. The example given 

shows the typical inference behavior of the trained model. 

While all the symbols are flawlessly detected, only one arrow 

is detected correctly. It can be assumed that the dataset 

provided for training does not cover a sufficiently wide range 

of variance in arrow appearance to force the model to learn the 

necessary generalized features describing arrows.  

 

 

Fig. 5: Inference result from model trained on real-world data. 

4.2. Learning key characteristics from synthetic data. 

To evaluate the potential of generators for hand drawings in 

training data generation, a model is trained on the real-world 

dataset enriched with an additional 3583 generated arrows 

arranged on blank backgrounds. For comparison, a dataset 

exclusively containing real-world data and a dataset 

exclusively containing generated arrows are used to train 

additional models under the same settings.  

To validate that it is generally possible to train an ML model 

to recognize real-world arrows using this data, a real-world test 

dataset with 200 hand-drawn arrows is used. The arrows in this 

dataset are based on the appearance that the generator can 
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generate which leaks the typical strong curvature of arrows in 

real-world VSMs. To demonstrate the general applicability of 

the presented approach, the conditions in the experiment 

conducted are idealized. Figure 6 depicts a labeled example 

data from this real-world test dataset. 

 

 

Fig. 6: Example data from the real-world test dataset. 

Table 2 lists the mAPs yielded on the real-world test dataset 

for different underlying train dataset configurations. 

Table 2: Yielded mAPs for different train dataset configurations.  

Training dataset 

configuration 

mAP 0.5 mAP 0.5-

0.95 

Synthetic data exclusively 0.10 0.01 

Real-world data exclusively 0.17 0.06 

Real-world and synthetic data 

combined 

0.63 0.17 

 

The results indicate that the synthetic data has enabled the 

model to learn key characteristics of the real-world arrows in a 

specific hand-drawn style as the model trained using a 

combination of real-world and synthetic data yields the highest 

mAP values. At the same time, the exclusive use of synthetic 

data seems not to be promising. While the model trained on 

synthetic data archived over 0.98 mAP (0.5 IoU thres.) on 

unseen synthetic data in additional trails, the domain shift 

towards real-world data seems to be a performance inhibitor as 

the performance when testing on real-world data drops to an 

mAP of 0.1 (0.5 IoU thres.). 

5. Conclusion 

Simulation software can help to better understand complex 

relationships and the dynamic behavior of value streams. The 

necessary digitization of the VSMs, which are typically created 

in analog form using pen-and-paper, stands in the way of a 

seamless workflow when using such software and creates a 

demand for an automated VSM digitization solution. 

The presented RSOD approach shows useful performance 

in the recognition of template-based symbols. In combination 

with state-of-the-art OCR solutions, these recognized symbols 

can serve as a possible basis for the recognition of the overall 

semantics and parametrization of VSMs. At the same time, the 

RSOD model trained on real-world data of VSMs shows 

significant weaknesses in the recognition of arrows. Arrows are 

essential key elements that must be considered when deriving 

the semantics of a VSM. Accordingly, a significant 

improvement in the performance of arrow recognition is crucial 

in this context. The manual creation and annotation of arrows 

is severely time-consuming. In this regard, it has been shown 

that is generally possible to use generated arrows as an 

alternative to real-world data for ML model performance 

increase.  

6. Outlook and future work 

As described, the general appearance of arrows the 

generator can produce is not close enough to the arrows 

typically seen in VSMs. Major adjustments regarding the 

generator must be made so that its usability in a non-idealized 
setting is granted. While it is still possible to define arrows and 

the associated variation ranges for derivation calculation in just 

a few lines of code, this procedure becomes significantly 

unpractical with somewhat more complex symbols such as the 

kaizen flash or the forklift symbol. One possible solution could 

be in the form of a graphical user interface in which symbols 

and corresponding variation ranges are defined graphically and 

not in the form of code. 

As shown, the performance of ML models is likely to suffer 

from domain shift. Synthetic data might show properties that 

allow a clear conclusion to be drawn about an existing symbol, 

but which do not occur in the real-world data. This can lead to 

an exploitation of the Clever Hans effect during training [29]. 

Addressing domain shifts and improving robustness with 

optimized augmentation methods and other approaches 

suitable to mitigate the effects of domain shifts in image 

recognition is currently subject to intense research [30, 31]. 
Future works may concern such approaches addressing the 

problem of domain shift. 
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